Correction for Kuo and Chang, GATA-1 and Gfi-1B Interplay To Regulate Bcl-xL Transcription.
نویسندگان
چکیده
The induction of Bcl-x(L) is critical for the survival of late proerythroblasts. The erythroid-specific transcriptional network that regulates Bcl-x(L) expression in erythropoiesis remains unclear. The activation of the central erythropoietic transcriptional factor, GATA-1, leads to the early, transient induction of a transcription repressor, Gfi-1B, followed by the late induction of Bcl-x(L) during erythroid maturation in G1ER cells. Chromatin immunoprecipitation assays demonstrated that a constant level of GATA-1 binds to the Bcl-x promoter throughout the entire induction period, while Gfi-1B is transiently associated with the promoter in the early phase. The sustained expression of Gfi-1B abolished GATA-1-induced Bcl-x(L) expression. Here, we present evidence that GATA-1 binds to the noncanonical GATT motif of the Bcl-x promoter for trans-activation. Gfi-1B expressed at increased levels is recruited to the Bcl-x promoter through its association with GATA-1, suppressing Bcl-x(L) transcription. Therefore, the down-regulation of Gfi-1B in the late phase of erythroid maturation is necessary for Bcl-x(L) induction. Furthermore, we show that the inhibition of Bcr-Abl kinase by treatment with imatinib caused the up-regulation of Gfi-1B in K562 cells, where Gfi-1B also cooperated with GATA-1 to repress Bcl-x(L) transcription. Gfi-1B knockdown by RNA interference diminished imatinib-induced apoptosis, while the overexpression of Gfi-1B sensitized K562 cells to arsenic-induced death. These findings illuminate the role of Gfi-1B in GATA-1-mediated transcription in the survival aspect of erythroid cells.
منابع مشابه
GATA-1 mediates auto-regulation of Gfi-1B transcription in K562 cells
Gfi-1B (growth factor independence-1B) gene is an erythroid-specific transcription factor, whose expression plays an essential role in erythropoiesis. Our laboratory has previously defined the human Gfi-1B promoter region and shown that GATA-1 mediates erythroid-specific Gfi-1B transcription. By further investigating the regulation of the Gfi-1B promoter, here we report that (i) Gfi-1B transcri...
متن کاملErythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis.
In the search for genes expressed in hematopoietic stem cells, we identified that the expression of Gfi-1B (growth factor independence-1B) is highly restricted to hematopoietic stem cells, erythroblasts, and megakaryocytes. Gfi-1 and Gfi-1B are zinc finger proteins that share highly conserved SNAG and 6 zinc finger domains. Gfi-1 has been characterized as an oncogene involved in lymphoid malign...
متن کاملGfi-1B Promoter Remains Associated with Active Chromatin Marks Throughout Erythroid Differentiation of Human Primary Progenitor Cells
Growth Factor Independent-1B (Gfi-1B) is a transcriptional repressor that plays critical roles in the control of erythropoiesis and megakaryopoiesis. Gfi-1B expression was described to be repressed by an autoregulatory feedback control loop. Here, we show that Gfi-1 transcription is positively regulated early after induction of erythroid differentiation and remains highly active to late erythro...
متن کاملGATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression.
The transcription factor GATA-1 is essential for normal erythropoiesis. By examining in vitro-differentiated embryonic stem cells, we showed previously that in the absence of GATA-1, committed erythroid precursors fail to complete maturation and instead undergo apoptosis. The mechanisms by which GATA-1 controls cell survival are unknown. Here we report that in erythroid cells, GATA-1 strongly i...
متن کاملEffect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.
Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 37 6 شماره
صفحات -
تاریخ انتشار 2007